History Crypto Primitives JILS) < il Hands on Bibliography

Was ist neu bei TLS 1.37

TSLv1.3 — 21nd Century Internet Transmission Security

Dr. Erwin Hoffmann

November, 20th, 2018

TLS1.3

[Transport Layer Security]

1/23

Todays Agenda

History of TLS and it's cryptographic concepts
Working model of former TLS implementations
Changes done for TLS 1.3

OpenSSL 1.1.1 under OmniOSce

Installation of fehQlibs + ucspi-ssl

Protocol analysis using WireShark and 'testssl’

TLS 1.3. has been published in RFC 8446 after years of discussion in the IETF
in August 2018. Since September 2018 OpenSSL 1.1.1 is available supporting
TLSv1.3. My software ucspi-ssl-0.10 is OpenSSL 1.1.1 enabled and used here
together with OmniOS (r15028).

2/23

https://tools.ietf.org/html/rfc8446
https://www.fehcom.de/ipnet/ucspi-ssl.html

History Crypto Primitives TLS 3 Hands on Bibliog|

Internet security protocols

Transport Layer Security (TLS) — aka Secure Socket Layer (SSL) — is a fundamental
IT security concept and in particular used for Web encryption (HTTPS) and encrypted
email transmission (ESMTPS/ESMTP+StartTLS).

Message ~@——protected messages

SSH| User (authenticated)
HTTP - — protected TLS end-to-end transmission = — W= |HTTPS| Application

S- € Instance
Records Sy F (authenticated)
TCP/UDP| Instance
Security Association via I[Psec > (stateful)
IP ack
sec packets WPA(2)
MAC frames Instance
A y (stateless,
Bit transmission U N 3 statefi
Dark Fiber Wireless stareful)

Figure: IT security protocols in a layered view

< The cryptographic framework and routines are also used for SSH, PGP, IPSec and
WiFi (WPA2), though in a different context.

3/23

History

Development of cryptographic standards and protocols

~@——protected messages User (authenticated)
- — protected TLS end-to-end transmission = = HTTPS| Application

Message

TLS- Instance
Records) S arel F (authenticated)
TCP/UDP)| Instance

Security Association via IPsec > (stateful)

IPsec packets =
WPA(2)
MAC frames Instance
(stateless,

Bit transmission N (7 stateful)

Dark Fiber

Figure: Cryptographic standards since the Unix epoch

Crypto Primitives

The #4 Crypto Primitives

Certificate
Authority (CA) :. M CA's
" private key
O: Signature Primitive O-m cas
A > public key
DSA, bSS
A \\\) A o ”I Bob's
L8 Asymmetrical 5 | g publickey
s 32 £ | £
sl X . crypto N
&l AN v [T
< < A
) S(: S S | &
B ERES
<| g Symmetrical S |2
a > <
= crypto NEEY
Y ‘|
&': En/Decryption Pr'imitive\\‘\
Block + Stream ciphers O Bob's
(AES, ChaCha) private key
Alice Bob

Figure: The #4 crypto primitives

History

a)

+—220 hostname EMSTP—

Crypto Primitives

5 SMTPS-

|| Server

TLS Handshake

EHLO client

250-hostname
250-PIPELINING

250-8BITMIME
250-SIZE 0
250 AUTH LOGIN

Port 465

TLS
Tunnel

4—220 hostname EMSTP—
——EHLO client———

Hands on

250-hostname
250-PIPELINING

250-8BITMIME
250-SIZE 0
250-AUTH LOGIN
250 STARTTLS

STARTTLS >
«+—220 Ready to start TLS—
TLS Handshake
b) (+) TLS Tunnel 0O

Figure: Immediate TLS and delayed TLS encryption; aka STARTTLS / STLS

= Immediate/mandatory TLS encryption: HTTPS, SMTPS, LDAPS, IMAPS,
POP3S, QMTPS

= Delayed/optional TLS encryption: ESMTP + StartTLS, POP3 + STLS

Bibliography

SMTP-
Server

TCPListen
Port 25

6/23

Crypto Primitives

TLS Networking Layering

(HTTP, SMTP, LDAP, ... |
<

i Heart- | [Hand- |[Change |[Fajerg Application protocol
T : beat :|shake ||CipherSpec PP (Ty[g 23)
L (Type 24): | (Type 22)[| (Type 20) Type 21)
S| Record Layer Protocol |
User Datagram Protocol (UDP) || Transmission Control Protocol (TCP)

Internet Protocol (IP)

Figure: TLS protocol layering

= TLS is located on top of TCP/UDP (layer 445) and below the application layer
().

= It provides a 'mini’ layering.

= The Record layer can be considered as transmission layer: The workhorse.

= Handshake, Change Cipher and Alert messages are mostly un-encrypted (using a
NULL-encryption).

= The Application messages are encrypted and protected.

= The Heartbeat Protocol was added in 2011 with only rough evaluation (and fatal
consequences).

Histor Crypto Primitives TLS < 1.3 Hands on Bibliography

The #4 Crypto Primitives within TLS < 1.3: The Handshake

TLS < 1.3 provides three different ways of handshakes:

= RSA handshake using
static RSA public and
private keys (the RSA
public key is part of the
X.509 certificate).

= Diffie-Hellman using the . —
TLS-)Client [= _
Discrete Logarithm () (TLS-)Server

algorithm (DHE) while (———TCP Three Way Handshake——
providing ephemeral keys. TCP (DClientHello >
The DH parameters can segment g ServerHello— TCP
be configured and < Certificate— segment
changed frequently. <—ServerKeyExchangc— =
« Diffie-Hellman with ¢——————ServerHelloDone—(5)] 1P packet
Elliptic Curve (@)-ClientKeyExchange >
TCP !
Cryptography (ECDHE). segment (D)-ChangeCipherSpec >
Curves and the DH (8)f-Finished - >
params (as starting point ¢ ChangeClpherSpec-} TCP
. < Finished— segment
for _the ca!culatlon are [secured TLS connection—————# £
typically fixed by the v Y

implementation. Figure: TLS handshake message exchange

History

Crypto Primitives TLS < 1.3 Hands on Bibliography

The #4 Crypto Primitives within TLS < 1.3: Encryption

TLS as the successor of SSL supports different sets of symmetrical de/encryption:

Block ciphers: Stream ciphers:
= 64 bit key-length DES = 40 + 128 bit key-length REZ
= 128 bit key-length 3BDES = ChaCha20 (with TLS 1.2)

= 128, 256, 384, 512 bit key-length AES

— The Block Ciphers are often used in 'stream-
ing mode’: CBC, OFB, GCM.

Symmetrical
En-/De-cryption

Steps:

fixe Ppse
- Block o r
Input data Cipher

common secret key

Encryption- e .
. eiste iffres 1, el ffres .

algorithm/ (DES, SDII?S, (IJAES,BIOWZ: b Cipher stream

implementation | Lucifer, TEA) Serpant, Idea) (RC4, A5/1+A5/2)

Operations

mode S-Box | LFSR NFSR

Cipher stream generation

Figure: TLS symmetric encryption

Histor

Header encrypted (optional |
rypted (op!)

Crypto Primitives TLS < 1.3 Hands on Bibliog|

The #4 Crypto Primitives within TLS < 1.3: Integrity Check

TLS (1.2) uses a keyword authenticated hash to provide authenticity and integrity
for the data: Message Authentication Code (keyed MAC).

Since TLS employs both stream and block encryption, hashing is done per TLS
record prior of encryption: MAC-then-encrypt (MtE).

RL Data of the application protocol |

/[/1 N
- = Segment Segment Segment
G oo [vac [e[pL] |C ement ||_Segment]| Scgment]
" > — ompression
I_ T_ Padding <Auh
Length (2 Byte) Hashvalue~ (oprional) MAC key
‘Version (2 Byte) calculation)
————Protocol (1 Byte) *—MAC
Encryption [)
20: ChangeCipherSpec Protocol Record Laver Session
21: Alert Protocol Heager key (+1V)
Protocol =¢ 22: Handshake Protocol
23: Application Protocol (HTTP,) Record Layer Frame

24: Heartbeat Protocol (DTLS; maybe also TLS)

Figure: Checking the integrity of transmitted data

phy

10/23

History Crypto Primitives TLS < 1.3 Hands on Bibliography

The #4 Crypto Primitives within TLS < 1.3: Cipher Suites

= Crypto primitives used for the current session are provided as Cipher Suite.
= The TLS protocol enumerates the sets fo crypto primitives.

KeyExchange+Authentication Encryption+Operational mode MAC
TLS.C_ A~ 1()_| 1|
i i 3y
RSA Anonymous DH | | Null ECB(default) | [Null
DH/DHE RSA #RC4(_40/_56/_128) CBC MD5
ECDH RSA (Export) DES(_40/_56) GCM SHA(1)
DSA 3DES_EDE(3) SHA256
DSS AES(_128/_256/_512) SHA384
ECDSA RC2(_128/256) . = .
SEED S i
Figure: TLS Cipher Suites [RFC 3268] CAMILLA Block ciphers
CipherSuite TLS_RSA_WITH_AES_128_CBC_SHA = { 0x00, Ox2F };
CipherSuite TLS_DH_DSS_WITH_AES_128_CBC_SHA = { 0x00, 0x30 };
CipherSuite TLS_DH_RSA_WITH_AES_128_CBC_SHA = { 0x00, 0x31 };
CipherSuite TLS_DHE_DSS_WITH_AES_128_CBC_SHA = { 0x00, 0x32 };
CipherSuite TLS_DHE_RSA_WITH_AES_128_CBC_SHA = { 0x00, 0x33 };
CipherSuite TLS_DH_anon_WITH_AES_128_CBC_SHA = { 0x00, 0x34 };
CipherSuite TLS_RSA_WITH_AES_256_CBC_SHA = { 0x00, 0x35 };
CipherSuite TLS_DH_DSS_WITH_AES_256_CBC_SHA = { 0x00, 0x36 };
CipherSuite TLS_DH_RSA_WITH_AES_256_CBC_SHA = { 0x00, 0x37 };
CipherSuite TLS_DHE_DSS_WITH_AES_256_CBC_SHA = { 0x00, 0x38 };
CipherSuite TLS_DHE_RSA_WITH_AES_256_CBC_SHA = { 0x00, 0x39 };
CipherSuite TLS_DH_anon_WITH_AES_256_CBC_SHA = { 0x00, Ox3A };

11/23

https://tools.ietf.org/html/rfc3268

Histor Crypto Primitives TLS < 1.3 Hands on

TLS < 1.3: Keymaterial and Keys

= TLS uses a variety of hash functions to derive deterministically the
PreMasterSecret and the Session keys from the input material.

= Hash functions are used to 'diffuse’ the input and thus pseudo random sequences
with significant entropy are the result.

= This is called a 'Pseudo Random Function' PRF.

[Hash [Hash [Hash [Hash [Hash | Hash |

I 'A' [PreMaslerSecrel[ServerRandom[Clieanandom]>—>
PrcMastchccrcl Hash Q MAC Secret Session Secret v

'BB' [PreMasterSecret| ServerRandom | ClientRandom @ . . .
| | | | Client Server Client Server Client Server
Haﬂh MD5 Initialisation vector IV:
a) For Stream ciphers - or -
b) for CBC/GCM ati d
|'CCC‘|PreMaslerSecrel ServerRandomlCheanandom }-’@) for operation mode
A

Hash | Hash | Hash

fe—3 * 128 bit —=1

Figure: Generating the PreMaster and the Session secrets

— Given RSA encryption, the only 'random’ number is the client’'s random provided
during the handshake. For Diffie-Hellman, client and server deliver a random value.

12/23

TLS < 1.3

TLS < 1.3: Weaknesses

= Backward compatibility with ancient SSL 2.0 (older versions): Renegotiation.
= 'Export ciphers' suited for NSA de-cryption.

= Control messages (Alerts, CCS) transmitted in clear text.

= No particular state model, thus attacker can interrogate at any point.

= Some Cipher suites (in particular with CBC) are weak or even bad.

= Very little control on negotiated Cipher suites (mod_ssl).

= Handshake is slow.

= Session Resumption with persistent data.

= Handshake can be broken up (MitM).

= MtE delivery valuable information for a hacker given its data decryption.

< TLS (as successor of SSL) is broken by design; it is 'just’ working and deployed ...
everywhere.

13/23

TLS < 1.3

TLS 1.3 — Summary

After years of discussion, the IETF released TLS 1.3 in RFC 8446 (and RFC 8447.

The TLS 1.3 core is a complete redesign.

Compatibility with older TLS version is provided supporting its 'skeleton’
behaviour and faking a TLS 1.2 handshake.

As already used in previous TLS releases, TLS 1.3 uses the 'Hello Message’ to
transport the new parameters.

ECDHE key exchange is mandatory and the only one!
TLS uses only a very restricted set of Cipher Suites.

Those Ciphers Suites (apart from AES and GCM) are mainly based on Dan
Bernstein's developments.

TLS 1.3 protects the negotiated data as soon as it is possible during the
handshake.

'Early’ Application Data can be transmitted in the handshake.

The handshake in TLS 1.3 is much more efficient and — using Session Resumption
— provides a ORTT capability.

— Though trying to cope with older TLS versions, TLS 1.3 is a different beast. Some
"Middleboxes’ don't allow to let the TLS 1.3 traffic through, since it does not look like
as expected.

4/23

https://tools.ietf.org/html/rfc8446
https://tools.ietf.org/html/rfc8447

History Crypto Primitives TLS < 1.3

TLS 1.3 — Handshake

Hands on Bibliography

The TLS 1.3 is much more efficient using an early encryption scheme.

a) b)

(TLS) Client E@:‘

- {————=TCP Session established ———=>__ ______ \ Message G]
!
| So Generates !
(S 1
s Master & I
] ! | Session keys !
il E :
1
h |
:5‘ .?Verslon 3.3, Random, SessionID, Cipher, !
S — Extensions: x304' ADP__} 1
§ [¢———————Certificate
3

S Verifies Certificate <—Certificate Verify (signature TH)

TCP Session established ———)|

'C]lentHe1104>

lVemon =

%Ceniﬁcaw Request: 2bj
——Certificate—{ 2¢
& Certificate Verify (signature TH)—{2d)

(TLS)
Server

EGenemles Master q——Finished (HKDF/Handshake) —{; ~«—Finished (HKDF/Handshake) —{2€] ¢
2 & Session keys ‘crypted
5 Message)—Finished (HKDF/Hand.shake)—b 3a}—Certificate >
"‘:TLS Connection ——————¢ 3bJ—Certificate Verify (signature TH)—
Application key —Finished (HKDF/Handshake) ———
HKDF(shared secret, c/s app traffic ...* TH) HKDF{(shared secret,s/c hs traffic* TH) ©———TLS Connection——0
Figure: TLS 1.3 Handshake; (a) without and (b) with Client Certificate Request; ALPN: Application
Layer Protocol Notifications
Only three messages are exchanged:
Client — Server The (unencrypted) Client Hello message.
Server — Client The Server Hello message: The first part including protocol artefacts in
clear text; the further parts are encrypted with a provisional secret
(Traffic Key) covering in particular the X.509 cert.
Client — Server The encrypted Finish message, telling that the Application Key is
ready for use. 15/23

History

Crypto Primitives

TLS < 13 Hands on

TLS 1.3 — Cipher Suites

Bibliography

KeyExchange+Authentication Encryption+Operational mode MAC
[TLS_C 1.]C DM — |
ECDHE 10 1

Null SHA-256
$ecp256r1(0x0017), | lrpq 175 gom sHA256 SHA-384

secp384rl1(0x0018),
secp521r1(0x0019),
x25519(0x001D),
x448(0x001E)

AES_256_GCM_SHA384
CHACHA20_POLY1305_SHA256|
AES_128_CCM_SHA256
AES_128_CCM_8_SHA256

Figure: TLS 1.3 Cipher Suites

CipherSuite TLS_AES_128_GCM_SHA256
CipherSuite TLS_AES_256_GCM_SHA384
CipherSuite TLS_CHACHA20_POLY1305_SHA256
CipherSuite TLS_AES_128_CCM_SHA256
CipherSuite TLS_AES_128_CCM_8_SHA256

{0x13,0x01}
{0x13,0x02}
{0x13,0x03}
{0x13,0x04}
{0x13,0x05}

Note: ¢CM = Cipher Block Chaining - Message Authentication Code (CBC-MAC)

— No particular Authentication method is indicated. Apart from PSK all Transcript

Messages are authenticated requiring a valid server X.509 certificate.

openssl ecparam -list_curves

16

23

History Crypto Primitives TLS < 1.3 Hands on Bibliography
TLS 1.3 — Record Layer
RL-
b n n
) HeAader encrypted (optional)) /l Agphcauon data'\ l
S S t S t
{ mac[wp [pL] | | eg'e“ | [Segment|
J P dalng mpression
a
Length @BY©) Lygagnvatue (optional) MAC- = d Application data]
‘Version (2 Byte calculation 3 / 7
(2 Byte)
L——Content type (1 Byte) Encryption o-1MAC | Segment |[Segment |[Segment]
ontent type
©) adding length (1 Byte) Record Layer EAD Seeret
hd Zero = encryption A'dfimonal
—— Record Layer Frame Record Layer data
Length (2 Byte) Padding Header
Version = x’303’ optional

Content type (1 Byte)

Figure: TLS 1.3 a) Record
AEAD

—_—
Record Layer Frame

layer structure w and c) w/o MAC, b) Record with MAC, d) Record with

17/23

History Crypto Primitives TLS < 1.3 Hands on Bibliography

TLS 1.3 — Keys

£
=
&
\

HKDF-Extr.

K0 Early Secret

Early Secret,
L.ext binder | . ..€ exp master*,

%:‘ res binder*, @ i TSH(ClientHello

—

none-
deterministic

(EC) HKDF-Extr. Handshake/Key Exchange

DHE - Handshake
Secret Secret

Handshake Secret. Handshake Secret.

3 ¢ hs traffic*, .8 hs traffic*,
o N TSH(HelloMessages) TSH(HelloMessages)
Client Traffic Server Traffic
Handshake Secret Handshake Secret

Master Secret, Master Secret,
L. ap traffic*, .. ap traffic*,
TSH(HelloMessages TSH(HelloMessages

Master Secret,
.res master,
TSH(HelloMessages.

Exporter Resumption
Master Secret Master Secret

< iterative key generation

Figure: TLS 1.3 Key generating procedure using HKDF
18/23

History

Crypto Primitives

TLS < 1.3

Hands on

TLS 1.3 - PSK & ORTT and Grease

Session Resumption is possible within
TLS 1.3 provided, both client and
server store the negotiated secret (per-
sistently):

Pre-shared Keys (PSK).

The PSK secret is indicated in the Client
Hello message providing a hash of the
PSK and coupled with the identity of the
client.

< In this case, a TLS session can lit-
erally succeed in one step, thus 0-RTT.
However, this breaks

Perfect Forward Secrecy (PFS)

Grease:

Generate Random Extensions And
Sustain Extensibility can applied by
client or server to 'test’ the counter-
parts TLS 1.3 capabilities indicating
‘invalid’ Cipher Suites in the Hello
message.

(TLS)
Client

Message d)—CIiemHello ________________

Stores PSK-Label
& Session keys

Figure: TLS 1.3

W\ @&

<———TCP Session established ——)

aphy

(TLS)
Server

'Versions— 3.3, Random, Nonce, Cipher:
lSultes Compressmn 0 |

2 Supported Vers:)804’

Grease

Supported Groups:
x25519, secp256rl, ...

Key Share Entry: Grease

Key Share Entry: x25519

Extensions

|Versu)n 3.3, Random, SesswnID
.Clpher Suite, Compression = 0 i

Supported Vers: ... o

Key SharWest:
x25519

| Finished (HKDF/Handshake) >

b TLS Connection <

=
«—New Session Ticket

a\\'

\Ticket Lifetime, Ticket Age]
lTlcket Nonce, Ticket ..., Extensions:

using Pre-shared Keys

19/23

Crypto Primitives

TLS < 1.3

Hands on

TLS 1.3 - 1RTT

Session establishment can be acceler-
ated in case both client and server don't
need to negotiate the Cipher, but rather
provide a quick focus: 1-RTT.

In this case, the client indicates to the
server to know already the (otherwise
transmitted) DH-Params and the cho-
sen curve (for ECC) for a quick negoti-
ation.

— However, the server may have
changed its DH-Params, thus this pro-
cedure would not work out. Rather,
in this case, the server sends a Hello
Retry message telling the new DH-
Params. This procedure obviously does
not violate PFS, since only protocol
artefacts are provided by the client.

Client ©
<———TCP Session established ——)

(E)—ChenrHellom>
Message |

!'Versions= 3.3, Random, Nonce, Clpher,
lSultes Compression =0

Key Share Entry: x25519 x|
cd34bblac39....

PSK Kex Exchange Modes:
psk_dhe_ke

PSK Identity: identity,
obfuscated ticket age

PSK Binder: HMACs
Offered PSK:

identity, binders

Early Data (23)

Extensions

@

\Cipher Suite, Compression = 0 i

<& ServerHelloRetry——— 2
Supported Vers: ...
Key Share Entry: x25519

Version = 3.3, Random, ScssionID;!
Key Exchange: ef1bc93..
Application Data (23) |

(TLS)

Server

Suryout:

Figure: TLS 1.3 using 1-RTT message exchange

20/23

History Crypto Primitives TLS < 1.3 Hands on

Commercial spot

anatol BADACH
erwin HOFFMANN

Technik der

4. Auflage

INTERNET-KOMMUNIKATION
IN THEORIE UND EINSATZ

Kapitel zum Internet SER
of Things HANSER

Figure: Technik der IP-Netze (4th edition)

Bibliography

21/23

Hands on

Implementation

OpenSSL 1.1.0:

= Install OpenSSL 1.1.1 on OmniOSce — however without overwriting previous Libs.

= How to tell which OpenSSL is installed?
fehQlibs + ucspi-ssl:
= Install fehQlibs (under /usr/local).
= Install ucspi-ssl using fehQlibs and OpenSSL 1.1.1.
= How can you tell that OpenSSL 1.1.1 is in use for a client/server?
testssl:
= Install Dirk Wetter's ssltest from https://github.com/drwetter/testssl.sh
= Test TLS 1.3. for some sites (including Google and fehcom).
WireShark:
= Install WireShark (> 2.5).

= Record a TLS 1.3 connection setup and do an interpretation of the negotiation.

23

https://github.com/drwetter/testssl.sh

History Crypto Primitives TLS < 1.3 Hands on Bibliography

Bibliography

= RFC 8446
= RFC 8447
= https://tools.ietf.org/html/draft-irtf-cfrg-eddsa-08

23/23

https://tools.ietf.org/html/rfc8446
https://tools.ietf.org/html/rfc8447
https://tools.ietf.org/html/draft-irtf-cfrg-eddsa-08

	History
	Crypto Primitives
	TLS < 1.3
	Hands on
	Bibliography

